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Embodiments disclosed herein provide systems and methods
for automating the acquisition and analysis of contrast
enhancement images. Model-free discrimination methods are
provided in which discrimination between well-perfused pix-
els (e.g. normal tissue) and perfusion-deficient pixels (e.g.
ablation lesions) is automated based on histogram shape. For
example, in selected embodiments, discrimination is made
based on pixels corresponding to abnormal perfusion (e.g.
ablation lesions) and normal perfusion (e.g. normal tissue)
form distinctive lobes separated by a minimum formed due to
the presence of border pixels. Segmentation of cumulative
dynamic contrast enhancement maps by thresholds identified
on such histograms is employed to separate abnormally-per-
fused tissue from the normally-perfused tissue without any
user interactions, freeing the user from the necessity to ana-
lyze and interpret original dynamic contrast enhancement
images or maps derived from them. The histogram properties
can also be used for automatic termination of the image
acquisition and analysis processes.
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SYSTEMS AND METHODS FOR
AUTOMATED DYNAMIC CONTRAST
ENHANCEMENT IMAGING

BACKGROUND

The present disclosure is related to contrast enhanced
medical imaging. In cardiac electrophysiology (EP), trans-
catheter radiofrequency (RF) thermal ablations aim for the
elimination and/or electrical isolation of the arrhythmia sub-
strate by creating closed loops of thermally ablated tissue.
Ablation lesion contiguity and inclusiveness define the pro-
cedural long-term success.

Currently, EP procedures are performed under x-ray, elec-
tro-anatomical voltage mapping (EAVM) and intra-cardiac
echo (ICE) guidance. All these modalities do not provide
adequate soft tissue visualization to the electrophysiologist.
Hence, there is a substantial and constantly growing interest
among the electrophysiologists in using MRI for ablation
outcome verification both intra- and post-operatively.

Previously reported studies investigated EP lesion appear-
ance on Tlw, T2w (1), delayed enhancement (DE, 2-5) MR
imaging, and their combination (6). They proved the feasibil-
ity of using MRI techniques for the visualization of fresh and
aged ablation lesions. However, these T1w/T2w-based imag-
ing methods provide low contrast between the ablation lesion
and surrounding normal tissue. Also, they required rather
long imaging times, which handicaps its potential intra-op-
erative applicability. In addition, the current T1w/T2w-based
imaging does not have a plausible biological explanation for
changes in the MRI appearance of ablation lesions during
repetitive imaging post-procedurally (7).

In contrary, contrast agent enhanced (CE) MR imaging has
proven to be an accurate and reliable indicator of tissue
destruction during thermal ablations (8), corresponding well
not only to the histopathological analysis (9), but also to the
delivered thermal dose (10, 11). However, delayed contrast
enhancement (DE) MR imaging of ablation lesions also
requires long waiting (after contrast agent injection) as well
as long scanning times, which complicates its intraoperative
applications. In addition, ablation lesions’ appearance on DE
MRI is highly influenced by the time elapsed after contrast
agent injection (3) and imaging resolution (7), and thus is
difficult to interpret. These drawbacks of the traditional MRI
ablation lesion visualization methods are especially pro-
nounced when the goal of the visualization process is not
simply to confirm the fact of the existence of ablation lesions
per se, but rather to delineate the lesions’ borders in order to
identify the gaps between them. Indeed, accurate delineation
of'the outer borders of ablation lesions is the main motivation
forintra- and post-operative MR imaging during cardiac abla-
tive procedures.

Dynamic contrast enhancement MRI is an improved
method involving the sampling of the process of contrast
agent arrival and passage through the tissue per se, and thus
does not require long waiting times after contrast agent injec-
tion. It has been successfully applied for ablation lesion visu-
alization and characterization (12, 13) as well as for tumor
perfusion (14, 15) and viability (16, 17) assessment. Dynamic
contrast enhancement MRI is based on the differences in
perfusion properties between different tissues or areas of the
same tissue—e.g., the lack of perfusion in the tissue areas
affected by ablation (due to the occlusion and/or disruption of
its vascular structures), which can potentially lead to apopto-
sis, especially in the myocardium. However, the existing
methods of dynamic contrast enhancement image analysis
are not suitable for intra- and post-operative imaging during
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cardiac EP procedures. They rely upon model-based fitting of
pixel enhancement curves with certain properties and thus
require the whole contrast agent wash-in and wash-out pro-
cesses to be sampled with high signal-to-noise ratio (SNR).
Such requirements not only result in longer MRI scan times,
but are also very difficult to satisfy in cardiac MRI restricted
by the respiratory and cardiac motion patterns of the imaged
anatomy.

Preliminary investigations have indicated (18) that these
limitations can be overcome by combining various instanta-
neous pixel intensity evolution characteristics at each
dynamic contrast enhancement sampling instant into cumu-
lative maps, which reflect not only the current signal evolu-
tion state of each represented pixel, but also the whole “pre-
history” of the pixel, and hence reflect the dynamic contrast
enhancement process in general rather its current instanta-
neous state only. This helps to differentiate between pixels
with different contrast enhancement properties, whose differ-
ences may be hidden by the image acquisition noise. As a
result, such maps are relatively immune to low SNR (which
makes them suitable for fast cardiac imaging), and require
imaging during only a relatively short time following contrast
agent injection to delineate ablation lesion borders without
any model-based fitting of curves with special properties
anticipated in advance.

Unfortunately, the intra-operative interpretation of
dynamic contrast enhancement images, both traditional and
cumulative images, poses a substantial challenge to the clini-
cal electrophysiologists, who do not have sufficient amount of
MRI expertise and experience. The usage of such techniques
requires complex decision-making. Making such analysis
and decisions, especially in the midst of performing invasive
procedures, requires certain knowledge of MR image forma-
tion and acquisition principles, which is potentially beyond
the achievable for clinical electrophysiologists at present.
This can handicap the acceptance of MRI (especially, the
intra-procedural one) as a useful aid during clinical EP pro-
cedures.

SUMMARY

Embodiments disclosed herein provide systems and meth-
ods for automating the acquisition and analysis of contrast
enhancement images. Model-free discrimination methods are
provided in which discrimination between well-perfused pix-
els (e.g. normal tissue) and perfusion deficient pixels (e.g.
ablation lesions) is automated based on histogram shape. For
example, in selected embodiments, discrimination is made
based on pixels corresponding to abnormal perfusion (e.g.
ablation lesions) and normal perfusion (e.g. normal tissue)
form distinctive lobes separated by a minimum formed due to
the presence of border pixels. Segmentation of cumulative
dynamic contrast enhancement maps by thresholds identified
on such histograms is employed to separate abnormally-per-
fused tissue from the normally-perfused tissue without any
user interactions, freeing the user from the necessity to ana-
lyze and interpret original dynamic contrast enhancement
images or maps derived from them. The histogram properties
can also be used for automatic termination of the image
acquisition and analysis processes.

Accordingly, in one aspect, there is provided a method of
performing contrast-enhanced medical imaging, the method
including the steps of: a) prior to injection of a contrast agent
to a subject, acquiring one or more baseline images of the
subject; b) determining an average baseline image from the
one or more baseline images; and after injection of the con-
trast agent to the subject; ¢) acquiring a post-injection image;
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d) generating at least one cumulative map including image
data from previously measured post-injection images, the
cumulative map further including a baseline correction based
on the average baseline image; e¢) generating a histogram
associated with the cumulative map; f) determining a quantity
associated with the shape of the histogram and comparing the
quantity to a pre-determined threshold; and g) repeating steps
¢) to f) until the quantity exceeds the pre-determined thresh-
old.

In another aspect, there is provided a computer imple-
mented method of automating acquisition of dynamic con-
trast-enhanced medical images, the method including the
steps of: a) acquiring baseline image data including one or
more baseline images of the subject; b) processing the base-
line image data to determine an average baseline image; ¢)
acquiring a post-injection image; d) processing image data
from previously measured post-injection images to generate
at least one cumulative map and performing a baseline cor-
rection based on the average baseline image; e) determining a
frequency of occurrence of cumulative map values of pixels
within binned intervals in a form suitable for generating a
histogram; f) determining a quantity associated with the
shape of the histogram and comparing the quantity to a pre-
determined threshold; and g) repeating steps ¢) to ) until the
quantity exceeds the pre-determined threshold.

In another aspect, there is provided a computer-readable
storage medium comprising instructions for automating
acquisition of dynamic contrast-enhanced medical images,
wherein execution of the instructions by one or more proces-
sors causes the one or more processors to carry out the steps
of: a) acquiring baseline image data including one or more
baseline images of the subject; b) processing the baseline
image datato determine an average baseline image; ¢) acquir-
ing a post-injection image; d) processing image data from
previously measured post-injection images to generate at
least one cumulative map and performing a baseline correc-
tion based on the average baseline image; e) determining a
frequency of occurrence of cumulative map values of pixels
within binned intervals in a form suitable for generating a
histogram; f) determining a quantity associated with the
shape of the histogram and comparing the quantity to a pre-
determined threshold; and g) repeating steps ¢) to ) until the
quantity exceeds the pre-determined threshold.

In another aspect, there is provided a method of performing
dynamic contrast-enhanced medical imaging, the method
including the steps of: a) measuring one or more baseline
images of a subject and determining an average baseline
image; b) injecting a contrast agent into the subject; ¢) acquir-
ing a post-injection image; d) generating at least one cumu-
lative map including image data from previously measured
post-injection images, the cumulative map further including a
baseline correction based on the average baseline image; ¢)
generating a histogram associated with the cumulative map;
f) determining a quantity associated with the shape of the
histogram and comparing the quantity to a pre-determined
threshold; and g) repeating steps ¢) to f) until the quantity
exceeds the pre-determined threshold.

In another aspect, there is provided a method of performing
contrast-enhanced medical imaging, the method including
the steps of: a) prior to injection of a contrast agent to a
subject, acquiring one or more baseline images of the subject;
b) determining an average baseline image from the one or
more baseline images; and after injection of the contrast agent
to the subject; ¢) acquiring a post-injection image; d) gener-
ating at least one cumulative map including image data from
previously measured post-injection images, the cumulative
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4

map further including a baseline correction based on the
average baseline image; and e) correcting for a bias in the
cumulative map.

In another aspect, there is provided a computer imple-
mented method of processing dynamic contrast-enhanced
medical images, the method including the steps of: a) acquir-
ing baseline image data including one or more baseline
images of a subject; b) processing the baseline image data to
determine an average baseline image; c¢) acquiring a post-
injection image; d) processing image data from previously
measured post-injection images to generate at least one
cumulative map and performing a baseline correction based
on the average baseline image; and e) processing the cumu-
lative map data and the baseline image data to correct for a
bias in the cumulative map.

A further understanding of the functional and advanta-
geous aspects of the disclosure can be realized by reference to
the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will now be described, by way of example
only, with reference to the drawings, in which:

FIG. 1 shows a flow chart for performing automated pro-
cessing and analysis of cumulative maps according to one
embodiment.

FIG. 2 is a sketch depicting evolution of a typical CES map
histogram from the beginning of data acquisition and analy-
sis, through its (a) early, (b) middle and (c) later stages.

FIG. 3 shows the identification of features on the histogram
for comparison with a threshold for automated scan termina-
tion.

FIG. 4 is a schematic of a system for performing automated
cumulative dynamic enhancement imaging measurements.

FIG. 5(a) shows a typical post-contrast agent injection
DynCE image (as acquired) with squares marking single
pixels whose time behavior was investigated. The squares are
considerably bigger than 1 px and marked with arrows to
enhance their visibility. The squares’ and arrow’s data curves
time dependent pixel intensities are shown in FIG. 5(5). The
ROI (region of interest) size is 65.3x109.3 mm (95x175 px).

FIG. 5() shows intensity of the pixels marked on FIG. 5(a)
plotted versus time through the whole scan. The vertical
arrow marks the time at which contrast agent injection began.
The data set was acquired ~2.5 hrs. after ablation.

FIG. 6 plots (a) traditional intensity difference (b) tradi-
tional intensity ratio and (c) simple intensity sum calculated
on the same ROI and data set for the same pixels depicted on
FIG. 5. First five dynamic images (acquired before contrast
agent injection started) were averaged to form the baseline
used for calculating the difference and ratio. No noise reduc-
tion was applied on the original images.

FIG. 7 plots (a) cumulative intensity difference (CID), (b)
cumulative intensity ratio (CIR) and (¢) cumulative enhance-
ment sum (CES), calculated on the same ROI and data set for
the same pixels depicted on FIGS. 5 and 6. The same baseline
was used and no noise reduction was applied on the original
images.

FIG. 8 shows images of (a) traditional intensity difference,
(b) traditional intensity ratio, and (c) simple intensity sum
calculated on the same ROI and data set depicted on FIGS.
5-7 from the last (in the temporal image acquisition series
following contrast agent injection) dynamic images. First five
dynamic images (acquired before contrast agent injection
started) were averaged to form the baseline used for calculat-
ing the difference and ratio. The original images were low-
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pass filtered by a single passage of a 3x3 pixel averaging filter
and empty background was suppressed by a histogram-based
threshold.

FIG. 9 plots the following cumulative maps: (a) CID, (b)
CIR, and (c) CES calculated on the same ROI and data set as
FIG. 8 from the last images. First five dynamic images (ac-
quired before contrast agent injection started) were averaged
to form the baseline used for calculating the difference and
ratio. The original images were low-pass filtered by a single
passage of a 3x3 pixel averaging filter and empty background
was suppressed by a histogram-based threshold.

FIG. 10 shows comparative plots of lesion-to-tissue con-
trast-to-noise ratio (CNR) for the CID, CIR, CES, original
images, as well as the traditional difference, ratio and simple
sum. All the curves were calculated on the same data set
(presented of FIGS. 8 and 9) and same baseline after the
original images were low-pass filtered by a single passage of
a 3x3 pixels averaging filter. Two 13x13 pixels ROI’s were
chosen inside the lesion core and normal tissue on the original
images (FI1G. 5(a)); difference, ratio and sum calculated for
the sake of comparison (FIG. 8) and proposed cumulative
characteristics (FIG. 9).

FIGS. 11 (a) and (¢) plot a CES map depicting the sampling
locations for the lesion profiles shown on FIGS. 11(b) and
11(d), respectively. For each sampling location, five adjacent
columns or rows were extracted, averaged, normalized to the
[0;1] range and plotted together for each compared charac-
teristic.

FIG. 12(a) shows lesion maps segmented by the Otsu
method from the CES obtained during the experiment illus-
trated on FIG. 5 at the DynCE scan time 159 sec., whichis 104
sec. after contrast agent injection and 206 sec. before the scan
end. The non-perfused pixels are marked in white, perfused—
in gray, and empty background ones—in black.

FIG. 12(b) shows a CES map from which the lesion map
was segmented.

FIG. 12(c) plots the CES map’s histogram (no smoothing
was applied; the empty background peak around the zero
value is not shown).

FIGS. 13(a)-(d) illustrate the time-dependent shape
change in the development of the histogram, along with the
corresponding CES maps.

FIGS. 14 (a) and (b) show post-CA IR FSPGR (also
referred to as delayed enhancement) images reformatted to
coincide spatially with the DynCE slices shown on FIGS. 9
and 11, respectively.

DETAILED DESCRIPTION

Various embodiments and aspects of the disclosure will be
described with reference to details discussed below. The fol-
lowing description and drawings are illustrative of the disclo-
sure and are not to be construed as limiting the disclosure.
Numerous specific details are described to provide a thorough
understanding of various embodiments of the present disclo-
sure. However, in certain instances, well-known or conven-
tional details are not described in order to provide a concise
discussion of embodiments of the present disclosure.

As used herein, the terms, “comprises” and “comprising”
are to be construed as being inclusive and open ended, and not
exclusive. Specifically, when used in the specification and
claims, the terms, “comprises” and “comprising” and varia-
tions thereof mean the specified features, steps or components
are included. These terms are not to be interpreted to exclude
the presence of other features, steps or components.
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Asused herein, the term “exemplary” means “serving as an
example, instance, or illustration,” and should not be con-
strued as preferred or advantageous over other configurations
disclosed herein.

As used herein, the terms “about” and “approximately”,
when used in conjunction with ranges of dimensions of par-
ticles, compositions of mixtures or other physical properties
or characteristics, are meant to cover slight variations that
may exist in the upper and lower limits of the ranges of
dimensions so as to not exclude embodiments where on aver-
age most of the dimensions are satisfied but where statisti-
cally dimensions may exist outside this region. It is not the
intention to exclude embodiments such as these from the
present disclosure.

Various embodiments, as disclosed below, provide systems
and methods for the automated analysis, processing, map-
ping, and segmentation of cumulative dynamic contrast
enhancement medical image data. Selected embodiments
automate the interruption of the data acquisition process once
a suitable level of visualization or discrimination has been
achieved, thus avoiding unnecessary long imaging times. The
data obtained during image acquisition may then be used to
calculate a dynamic contrast enhancement map associated
with the particular acquisition time interval and subsequently
perform image segmentation. The described methodology
and its benefits may further the acceptance of dynamic con-
trast enhancement imaging (such as dynamic contrast
enhancement imaging MRI) by the clinical electrophysiolo-
gists and encourage its applications for intra- and post-opera-
tive ablation lesion visualization. Also, the described meth-
odology can be used to differentiate between any areas with
different perfusion or washout properties under any circum-
stances—e.g., tumor neovasculature or residual (after treat-
ment) tumor vs. healthy tissue, ischemic (for any reason)
tissue vs. normal tissue, infarcted myocardium or hemor-
rhagic brain vs. normal ones, cryo or heat ablation lesions,
and the like.

According to selected embodiments of the present disclo-
sure, historical or cumulative image data is acquired for a
given pixel and processed to determine aspects of the image,
as opposed to simply obtaining and processing the instanta-
neous pixel intensity. As shown below, the differences
between cumulative enhancement patterns obtained accord-
ing to the present embodiments have been found to be more
apparent than those between instantaneous enhancement val-
ues. In particular, the cumulative dynamic contrast enhance-
ment processing avoids problems associated with signal and
noise intermix on noisy dynamic contrast enhancement
images, where pixels with different perfusion properties can
exhibit similar pixel intensity values and degrade instanta-
neous images. Accordingly, in selected embodiments, histori-
cal information characterizing the dynamic contrast enhance-
ment pattern of a given pixel is accumulated and propagated
further (as the data post-processing continues) to be used with
any newly acquired data in a computationally efficient man-
ner.

Advantageously, it has been found that methods disclosed
herein are suitable for processing datasets that would be
deemed to be incomplete according to traditional methods.
For example, suitable image contrast and feature segmenta-
tion can be achieved, optionally in a fully automated manner,
even when images are obtained only during the contrast agent
wash-in step and terminated before a global maxima (or
minima, or plateau) is obtained.

Moreover, unlike known methods, the dynamic image pro-
cessing methods disclosed herein do not require a theoretical
model of the dynamic contrast enhancement process itself,
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nor do they require following model-based data fitting to a
signal evolution curve with a specific shape. This model-
agnostic aspect of the embodiments disclosed herein support
the application of the present methods and systems to a wide
range of imaging modalities in both clinical and research
settings.

In one embodiment, a method is provided for the auto-
mated collection and processing of cumulative dynamic con-
trast enhancement images. In the specific and non-limiting
example presently considered, and in the examples provided
below, the imaging modality is MRI imaging. It is to be
understood that this specific imaging modality is provided
merely for heuristic purposes and is not intended to limit the
scope of the present disclosure in any way.

Referring to FIG. 1, a flow chart is provided that describes
steps involved in performing the present example method. In
step 100, an initial set of scanned images are acquired prior to
injection of a contrast agent (e.g. a diagnostic contrast agent
suitable for generating contrast in acquired medical images).
For example, if the imaging modality is MRI, a repetitive
MRI scan series (i.e. a “multi-phase” scab) is initiated to
acquire an initial image set of the same imaging field of view
(FOV) at anumber of time instants (i.e. “phases”) with appro-
priate temporal resolution. An appropriate temporal resolu-
tion may be achieved, for example, by acquiring one temporal
phase with sufficient speed to resolve motion and to generate
images substantially free of imaging artifacts. The temporal
resolution may also selected to be suitable to depict the course
of'the contrast agent passage process. In step 110, the average
baseline image €, ; is calculated, where i and j are indices
representing the different pixels of an acquired two-dimen-
sional image, according to the following equation:

where the index k represents each acquired baseline image, n,,
is the total number of baseline images that are acquired, and
M, Jk denotes the intensity measured for the (i,j) image pixel in
the kth scan.

In one embodiment, this step is performed iteratively in
real-time (during the acquisition of images) by calculating,
for each scan acquired, the running average baseline image
€, that is based on only the most recent newly acquired
image and the previous value of the average baseline image.
Inthis regard, the calculation of the average need only involve
i*j data points, as opposed to n,*i*j data points.

Having obtained a baseline image, the contrast agent is
then injected in step 120. Following injection, a series of
images are obtained by repeating steps 130-160 to track the
cumulative effects of the contrast agent. As shown in the
figure, following the acquisition of each new image, a series
of'image processing steps are carried out in order to determine
whether or not sufficient data has been acquired to interrupt
the scanning and post-process the image data.

The individual processing steps are now considered in
further detail. In step 130, an image is acquired. One or more
cumulative maps are then calculated in step 140, where the
cumulative maps include both historical image data from
previously acquired images, and newly acquired image data
from the present scan. When performing step 140 for the first
time, there is no historical image data, and the cumulative
maps are calculated based on the presently acquired image
data alone.
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In one example implementation, the cumulative maps may
be one or more of the following two dimensionless cumula-
tive maps: the cumulative intensity difference (CID), defined
as:

1 & 2]
¥ii=5 > -0,
k=np+1
and the cumulative intensity ratio (CIR), defined as
5 )
;= Z Q—JJ Vi, )00,

k=np+1

where n is the total number of images acquired. As shown in
equation 2, the CID may be normalized and made dimension-
less by dividing by the average baseline intensity v:

1

IxJ

J
Z Q5

!
V=
=1 =1

where v is obtained by averaging €, ; over all pixels to serve
as a convenient normalization constant.

The CID cumulative map therefore provides a cumulative
measure of the intensity difference between images data M, Jk
obtained following the injection of contrast agent and the
average baseline image €, . Similarly, the CIR cumulative
map provides a cumulative measure of the intensity ratio
between images data M, Jk obtained following the injection of
contrast agent and the average baseline image €2, ;. It is to be
understood that these cumulative maps are only provided as
examples, and that various related cumulative maps may be
constructed without departing from the scope of the present
embodiment.

While W, ”* and @, ”* are dimensionless and provide the
same type of information, they differ by their dynamic range
and sensitivity to noise due to the different normalization
factors. They can be analyzed separately, or, in other embodi-
ments, combined into a single map. In one example imple-
mentation, the CID and CIR may be normalized to the
dynamic range of [0;1] and summed to form a cumulative
enhancement sum (CES):

w7, — MIN(Y")
MAX(¥7) - MIN(¥")

@7, - MIN@")

AT =
b MAX(@") - MIN(@*)”

where MIN( ) and MAX( ) denote the minimal and maximal
pixel values of the corresponding map as a whole one iden-
tified prior to performing any other operations on it.

It is to be understood that equation 5 provides only one
example implementation of a cumulative map based on both
a cumulative intensity difference and a cumulative intensity
ratio. In other examples, the sum can involve direct arithmeti-
cal addition, adding squared quantities (with or without a
square root operation), adding logarithms or roots, and the
like. If deemed suitable, the normalization step can be omit-
ted.

In one embodiment, the calculation of the one or more
cumulative maps is performed iteratively in real-time (during
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the acquisition of images) by calculating, for each scan
acquired, an updated value that is based on only the most
recent newly acquired image and the previous value of the
cumulative map. In this regard, the calculation of the cumu-
lative map, when performing step 140, need only involve i*j
data points, as opposed to (n-n,)*i*j data points.

Having obtained the one or more cumulative maps in step
140, one or more of the cumulative maps is processed in step
150 to generate a histogram describing the frequency of
occurrence of different values of the cumulative map (within
binned intervals) among the various pixels.

In one embodiment, as illustrated in FIG. 2, when the field
of view of the image includes tissues having different perfu-
sion rates of the contrast agent, the histogram shape evolves
as more post-injection images are acquired (which are used to
calculate more cumulative enhancement maps), and a char-
acteristic shape emerges. This characteristic shape may then
be employed to identify a point in time, or a number of
acquired images, for which sufficient a signal-to-noise ratio
and/or contrast-to-noise ratio is obtained for subsequent post-
processing.

FIG. 2 illustrates an example of the CES histogram (ob-
tained by calculating the CES according to equation 5), and
its evolution under cumulative dynamic contrast enhanced
imaging of a field of view including an ablated tissue region.
Initially, a single lobe 200 is observed in the CES map histo-
gram during the early wash-in period, as seen in FIG. 2(a).
However, as additional contrast agent is absorbed and the
CES cumulative image is further amended by additional
images, the width of the histogram increases, and the histo-
gram develops additional structure, such as lobes 210 and 220
shown in FIG. 2(b).

This change in the histogram profile occurs because the
core region of the ablated tissue exhibits a perfusion rate that
is, for example, considerably lower (or zero) relative to that of
the surrounding non-ablated tissue. As the CES map histo-
gram further evolves in time, a local minimum 230 is formed
between the two lobes as further image contrast is achieved,
as shown in FIG. 2(c). This contrast between the ablation
lesion cores, borders and normal tissue arises due to the
normalization and summation typical for the cumulative
characteristics (see equations 2, 3, and 5), so it will improve as
the number of acquired images (n) grows. As the lesion con-
spicuousness on the CES (or, for example, CID or CIS) maps
improves with each newly acquired dynamic contrast
enhancement image, this will result in a characteristic evolu-
tion of the shapes of their histograms.

Referring again to FIG. 1, having generated the histogram,
one or more characteristic quantities associated with the
shape of the histogram are then identified in step 160. FIG. 3
illustrates the identification of the features in the histogram
for the determination of a characteristic quantity. In one
example implementation, the quantity is formed as the ratio
between the peak-valley offset 240 and the peak height 250.
In another embodiment, the quantity may be formed by com-
paring not only the peak values, but also the peak positions.
When determining the peak height, it may be beneficial to
average the two maximum peak values.

The quantity may be determined by automated analysis of
the histogram. For example, an algorithm may be performed
to determine the positions and values of the histogram
maxima and local minimum by comparing the different
binned values.

It is to be understood that many other suitable measured of
the histogram shape could also or alternatively be employed.
For example, with regard to the histogram shape shown in
FIG. 3, other suitable example measures include the x-axis
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separation between the peaks and the full-width half-maxi-
mum of the composite double-lobe structure. The full-width
half-maximum measure may be well suited to implementa-
tions in which the separation between peaks is insufficient to
produce a sufficiently depressed local minimum. In other
embodiments, one or more quantities associated with the
shape of the histogram may be obtained by fitting the histo-
gram to a pre-determined functional form. For example, the
positions of the peaks 210 and 220, and their corresponding
full-width half-maxima, may be obtained mathematically by
fitting the histogram to a double Gaussian function using a
least-squares fitting routine. In another example, a parabolic
curve may be fit to the histogram minimum and two maxima.
In this example, three points may be sufficient to calculate
fitting coefficients according to the functional form a*x"2+
b*x+c=0. These fitting coefficients (a, b and c¢) describe a
particular shape, which will be becoming more deep and wide
as the cumulative maps evolve in the present example.

As shown in step 170 of FIG. 1, the quantity may then be
compared with a threshold value in order to determine
whether or not to continue acquiring additional images. The
threshold may be a value of the quantity beyond which (or
alternatively below which) a sufficient signal-to-noise ratio is
obtained for subsequent image processing (such as image
segmentation). The value of the threshold may be experimen-
tally determined through a calibration process. Step 170 may
involve comparing a single quantity with a single threshold,
or may involve the comparison of two or more quantities with
their associated thresholds.

The method provided above describes the automatic inter-
ruption of image acquisition based on the processing of a
histogram associated with a cuamulative map. Accordingly, in
some embodiments, image acquisition may be interrupted
based on the processing of one cumulative map. If the imag-
ing involves the acquisition of multiple image slices (i.e.
image planes), then one or more cumulative maps may be
selected for processing according to the aforementioned
method. In one example implementation, a particular image
slice may be selected for processing, such as an image slice
located in a pre-determined anatomical location. In another
example, a particular image slice for processing may be
selectable by a user.

In another example implementation, two or more image
slices may be selected for processing to determine when
image acquisition may be interrupted. The two or more image
slices may be selected according to various criteria. Non-
limiting examples of selecting the slices include selecting the
slices according to a pre-selected spatial distribution, a pre-
determined spatial interval, prescribed anatomical locations,
or at random.

When processing the cumulative maps corresponding to
the two or more image slices, different methods may be
employed to determine when the acquisition of images may
be interrupted. In one example implementation, the determi-
nation may be made once a quantity associated with a shape
of a histogram corresponding to a cumulative map of one or
more of the image slices exceeds a threshold. In another
embodiment, the histograms associated with the per-slice
cumulative maps of two or more image slices may be pro-
cessed to determine a composite quantity for comparison to a
threshold. The threshold may be an array of per-slice thresh-
olds, or a single threshold that is compared to a quantity based
on multiple per-slice quantities. For example, the quantities
associated with each of the histograms may be averaged to
produce an average quantity. In another example, weighting
factors may be applied when averaging the quantities, accord-
ing to a pre-determined set of weights. For example, weights
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may be selected based on treatment result assessment, with
the slices having the most importance receiving the highest
weights, and the slices with the least importance receiving the
lowest weights. In one embodiment, the two or more slices
could be selected to be clinically important slices, and the
quantities associated with each clinically important slice
could be combined according to “importance coefficients”.

If the characteristic histogram shape evolution is not
observed (for example, the histogram remains mono-lobal,
which may occur if the separation between abnormal tissue
and normal tissue on the cumulative enhancement maps is
weak), the acquisition and analysis of the dynamic contrast
enhancement images continues as illustrated by FIG. 1 (the
backward loop between steps 170 and 130). In case the
desired histogram shape has not been reached until the end of
the dynamic scan (i.e. until the last temporal phase of the
current dynamic contrast enhancement scan has been
acquired), then the last calculated cumulative enhancement
map may be segmented to obtain the representation of the
ablation lesions. In another embodiment, the histogram shape
may be smoothed prior to performing histogram shape analy-
sis and threshold comparison.

If the quantity associated with the histogram shape does
not exceed the threshold, then an additional scan is acquired
and processed by repeating steps 130-160. If, however, the
quantity determined in the above step exceeds the threshold,
then the scanning process may be interrupted. In one example
implementation, the interruption of the scanning may be per-
formed automatically, for example, in response to a control
signal communicated from the processor to the imaging
device. Alternatively, an indication may be communicated to
the user that sufficient data has been obtained such that the
scanning scan may be interrupted by the user. Suitable indi-
cations include textual or audible indications, such as an
audible sound indicating the collection of sufficient imaging
data.

Although the present embodiment is described and illus-
trated herein in terms of the graphical generation of a histo-
gram, it is to be understood that the disclosed graphical analy-
sis is merely one example implementation of the present
method step. Itis to be understood that the steps of generating
and processing the histogram may be performed by a proces-
sor, where the processor is employed to process and/or refor-
mat the cumulative map data into a tabular representation in
which the frequency of cumulative map values are deter-
mined within binned intervals, and where the processor is
employed to obtain or extract, from the tabular representa-
tion, one or more characteristic quantities associated with a
corresponding histogram shape.

After having interrupted the acquisition of images in step
180, the cumulative image data, obtained in the form of one or
more cumulative maps, may be processed for image analysis.
The subsequent image processing step may be fully auto-
mated and performed by the processor performing the above
analysis steps, or may be performed off-line on a separate
computing system.

In one embodiment, the one or more cumulative maps may
be segmented to determine a border between tissue regions
having different perfusion characteristics. For example, the
characteristic histogram shape identified as described above
can be utilized for automated segmentation without the need
to user input or interaction. The segmentation process may be
performed by selecting, as a location for the segmentation
threshold, the local minimum in between the two peaks on the
cumulative map, such that pixels with cumulative map values
exceeding the cumulative map value corresponding to the
local minimum are deemed as being associated with one type
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of tissue (e.g. normal tissue) and all pixels with cumulative
map values less than the cumulative map value corresponding
to the local minimum are deemed as being associated with
another type of tissue (e.g. ablated tissue or tissue having a
pathology).

In another embodiment, segmentation may be performed
by the Otsu method (25). After having performed segmenta-
tion, the resulting cumulative map may be enhanced by one or
more of erosion and dilation, for example, by a single passage
of an 8-connectivity element (26) followed by low-pass fil-
tering using a single passage of a 3x3 pixel averaging filter.

Although the preceding embodiments describe segmenta-
tion by the Otsu method or via thresholding, it is to be under-
stood that any suitable segmentation method may be imple-
mented. Segmentation may be performed on the temporal
series of the cumulative map. In one example, a clustering
method such as the fuzzy C-means method may be employed.

The aforementioned automated scanning, processing,
interruption, and optional post-processing methods may be
beneficial in providing to a clinician (e.g. a clinical electro-
physiologist), in real-time, processed and optionally seg-
mented dynamic contrast enhancement images. This may be
a significant benefit to clinical workflow and speed in making
decisions concerning ablation, lesion delineation, and the
potential success of a medical procedure.

In another embodiment, the aforementioned methods of
calculating cumulative maps may be improved by correcting
for the presence of bias terms. The presence of the bias terms,
and their removal and/or cancellation, is henceforth described
with reference to an example mathematical description of the
various sources of signals when performing imaging mea-
surements.

Mathematically, it can be shown that the magnitude of the
image intensity M, Jk of each pixel can be approximated by a
sum of signal-dominated and noise-dominated terms (Ap-
pendix 1, [21-23]), while the signal-dominated term can be
considered as a sum of CE-independent and CE-caused terms
(Appendix 2, 24):

M, (¢ :lk):M,jk:ﬁi,j+§i,jk+Xijk [6],
where i=1, ..., land j=1, ..., ] denote the pixel’s position
within a region of interest (ROI) of the size IxJ pixels; k
denotes the number of a dynamic phase acquired at the time t,,
as counted from the onset of the image acquisition procedure;
B, denotes the signal intensity contribution due to the inher-
ent properties of the biological tissues inside the imaged pixel
(i.e., the signal-dominated term); &, Jk and y;, Jk denote signal
intensity contributions due to the time-transient contrast
agent content and noise-dominated term correspondingly. If
B, +E: Jk>xl. Jk, e Jk has zero mean and can take both positive
and negative values (Appendix 1).

As noted above, during image acquisition, the first n,
images (k=1,2, ..., n,) are acquired prior to contrast agent
injection for the purpose of obtaining an averaged baseline
image, such that:

&, F=0Vksn, [7].

The contrast agent-free images can be averaged to form the
pre-injection baseline image €2, ;, as shown above in equation
1:

1 1
&= n—z Mi; =B+ %Z X
ia =

0
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The mean signal intensity of the baseline image can be
obtained by averaging over all pixels to serve as a convenient
normalization constant:
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As contrast agent injection starts at the time of the acqui-
sition of the ny+1-th image, the pixels occupied by perfused
tissues will gain addition signal intensities §, /” on the rest of
the images. The total signal enhancement (if any) gained by a
pixel after contrast agent injection at the time t,, can be esti-
mated using cumulative intensity difference (CID) as well as
the cumulative intensity ratio (CIR) defined in equations 2
and 3, respectively.

Substituting M, Jk and €2, ; in equations 2 and 3 with equa-
tions 6 and 8 correspondingly:

n n y 10]
1 1 n-ne) & [
= § ko § ko_ § K
y f‘,_/ + y L4 y Xﬂo )d(v./
k=ng+1 k=ng+1 K=l
and
(n o) (L]

=(n- no>+— Z é—‘fj+— Z

‘Jk =ng+1 ‘Jk ng+1

Z A

xn
0

The linearly growing bias (n-n,) can be eliminated from the
CIR map by subtraction:

Both CID and CIR are biased by the last terms proportional
to

n
o 2u X
12

Ok’:l

which can be estimated from the baseline image if n, is large
enough:

[13]
In this case, the corrected CID and CID maps can be calcu-

lated as

[14]
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n 15]
L MF (n—ng) [
n i 0
b, = m-("—ﬂo)+ o, 0=
k=ng+1
Z (M +©) — (n—ng)
‘Jk =ng+1
to deliver the following estimates:
T O T B [16]
Yij=5 > Gty DM
k=ng+1 k=np+1
and
[17]

Z§k+9 Z)/‘(J

‘Jk =ng+1 N Sy)

Equations 8, 4 and 13 can be evaluated as soon as the first
n, images have been acquired (or even during the acquisition
of the first n, images. During the rest of the dynamic contrast
enhancement scan, W, " and CI) .,/ can be calculated iteratively
inreal time accordlng to equations 14 and 15 correspondingly
using only the images acquired up to (and including) the
current time instant without any model-based curve fitting, so
the image acquisition and analysis processes can be stopped
at any moment. Furthermore, the CES, including a correction
for bias, can be obtained by substituting P, ,/ and @, ;" into
equation 5.

The first terms in equations 16 and 17 contain summation
of the CE signal contributions (&, j) and will approach zero
for the non-perfused pixels, while they will have higher val-
ues for the perfused pixels and reach their maximum for the
pixels constituting the hyper-enhanced ablation lesion rim.

The second terms equations 16 and 17 contain summation
of the noise-dominated terms (3, Jk). For pixels exhibiting a
sufficiently strong image signal (for whom the signal-domi-
nated term is larger than the noise dominated-one), the sum
will approach zero since the positive and negative summation
terms will mutually annihilate. Otherwise, it will approach a
positive constant dependent on the statistical properties of the
original image acquisition noise.

Thus, when n, and n are large, the dynamic range of the
cumulative enhancement maps calculated according equa-
tions 14 and 15 will be defined by the lesion core

[both Zn: f"-"jHOand Zn: )/‘."jao]

k=ng+1 k=ng+1

and hyper-enhanced ablation lesions rims

max1mumZ f{‘l while Z )d(JHO

K=ng+1 k=np+1

The pixels containing no tissue will have intensities slightly
higher than the lesion core
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Zn: £~ 0 and Zn: Xt - const > 0|,

k=np+1 k=np+1

while the pixels containing normal perfused tissue will
occupy the rest of the dynamic range depending on their
perfusion state and ability to retain the contrast agent

n

intermediate

gy while > 4k 0

e k=ng+1

The ablation lesion core visibility can be enhanced even
more by excluding from further (nzn,+1) calculations the
empty pixels, which demonstrate too low baseline signal €2, ;.
Since the described method operates on the signal intensity
time series of each pixel separately, it does not affect the
spatial resolution of the original data set. It only improves the
contrast between pixels with different dynamic contrast
enhancement properties without reducing the spatial resolu-
tion of the original data set.

While the preceding example has provided methods for
correcting for the presence of bias in selected cumulative
maps (namely the CID, CIR and CES cumulative maps), the
bias correction embodiment disclosed herein is not intended
to be limited to those specific cumulative maps. It is to be
understood that the bias correction methods disclosed herein
may be adapted and/or applied to a wide range of cumulative
maps based on the preceding disclosure.

Referring now to FIG. 4, an example system 400 for per-
forming the aforementioned methods is illustrated. System
400 includes imaging device 420 and control and processing
unit 425, the latter of which is described in further detail
below.

Imaging device 425 obtains images of subject 405 within a
prescribed field of view. Imaging device 425 may be any
medical imaging device suitable for performing cumulative
dynamic contrast enhanced imaging. A non-limiting list of
example imaging devices includes MRI, CT, US, X-Ray,
PET, SPECT, nuclear perfusion modalities and optical
modalities.

Control and processing unit 425 may be interfaced with
imaging device for the receiving acquired images, and option-
ally for controlling the acquisition of images. Control and
processing unit 425 receives image data from imaging device
420 and processes the imaging data as per the aforementioned
methods. In some embodiments, control and processing unit
425 is configured to actively control aspects of imaging
device 420, such as the interruption of a scan after having
determined that a quantity associated with a cumulative map
histogram exceeds a pre-defined threshold, as described
above.

Some aspects of the present disclosure can be embodied, at
least in part, in software. That is, the techniques can be carried
out in a computer system or other data processing system in
response to its processor, such as a microprocessor, executing
sequences of instructions contained in a memory, such as
ROM, volatile RAM, non-volatile memory, cache, magnetic
and optical disks, or a remote storage device. Further, the
instructions can be downloaded into a computing device over
a data network in a form of compiled and linked version.
Alternatively, the logic to perform the processes as discussed
above could be implemented in additional computer and/or
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machine readable media, such as discrete hardware compo-
nents as large-scale integrated circuits (LL.SI’s), application-
specific integrated circuits (ASIC’s), or firmware such as
electrically erasable programmable read-only memory (EE-
PROM’s).

FIG. 4 provides an example implementation of control and
processing unit 425, which includes one or more processors
430 (for example, a CPU/microprocessor), bus 402, memory
435, which may include random access memory (RAM) and/
or read only memory (ROM), one or more internal storage
devices 440 (e.g. a hard disk drive, compact disk drive or
internal flash memory), a power supply 445, one more com-
munications interfaces 450, external storage 455, a display
460 and various input/output devices and/or interfaces 455
(e.g., areceiver, a transmitter, a speaker, a display, an imaging
sensor, such as those used in a digital still camera or digital
video camera, a clock, an output port, a user input device,
such as a keyboard, a keypad, a mouse, a position tracked
stylus, a position tracked probe, a foot switch, and/or a micro-
phone for capturing speech commands).

Although only one of each component is illustrated in FIG.
4, any number of each component can be included control and
processing unit 400. For example, a computer typically con-
tains a number of different data storage media. Furthermore,
although bus 402 is depicted as a single connection between
all of the components, it will be appreciated that the bus 402
may represent one or more circuits, devices or communica-
tion channels which link two or more of the components. For
example, in personal computers, bus 402 often includes or is
a motherboard.

In one embodiment, control and processing unit 425 may
be, or include, a general purpose computer or any other hard-
ware equivalents. Control and processing unit 425 may also
be implemented as one or more physical devices that are
coupled to processor 430 through one of more communica-
tions channels or interfaces. For example, control and pro-
cessing unit 425 can be implemented using application spe-
cific integrated circuits (ASIC). Alternatively, control and
processing unit 425 can be implemented as a combination of
hardware and software, where the software is loaded into the
processor from the memory or over a network connection.

Control and processing unit 425 may be programmed with
a set of instructions which when executed in the processor
causes the system to perform one or more methods described
in the disclosure. Control and processing unit 425 may
include many more or less components than those shown.

While some embodiments have been described in the con-
text of fully functioning computers and computer systems,
those skilled in the art will appreciate that various embodi-
ments are capable of being distributed as a program product in
avariety of forms and are capable of being applied regardless
of'the particular type of machine or computer readable media
used to actually effect the distribution.

A computer readable medium can be used to store software
and data which when executed by a data processing system
causes the system to perform various methods. The execut-
able software and data can be stored in various places includ-
ing for example ROM, volatile RAM, non-volatile memory
and/or cache. Portions of this software and/or data can be
stored in any one of these storage devices. In general, a
machine readable medium includes any mechanism that pro-
vides (i.e., stores and/or transmits) information in a form
accessible by a machine (e.g., a computer, network device,
personal digital assistant, manufacturing tool, any device
with a set of one or more processors, etc.).

Examples of computer-readable media include but are not
limited to recordable and non-recordable type media such as
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volatile and non-volatile memory devices, read only memory
(ROM), random access memory (RAM), flash memory
devices, floppy and other removable disks, magnetic disk
storage media, optical storage media (e.g., compact discs
(CDs), digital versatile disks (DVDs), etc.), among others.
The instructions can be embodied in digital and analog com-
munication links for electrical, optical, acoustical or other
forms of propagated signals, such as carrier waves, infrared
signals, digital signals, and the like.

The proposed cumulative method has several advantages
as compared to known image processing protocols. In par-
ticular, the present methods are well suited to the processing
of noisy images showing no global minima, maxima or pla-
teau, to which the traditional concepts (such as mean time to
enhance, time to peak or minimum) are not applicable. Fur-
thermore, embodiments provided herein are resistant to
image acquisition noise, as shown in the examples below. In
addition, the present methods do not affect the spatial reso-
Iution of the original images, since it operates in the temporal
domain only on a pixel-by-pixel basis. Although pre-filtering
of the input data may improve the quality of the resulting
cumulative maps, the methods provided herein can generally
perform without pre-filtering while delivering satisfactory
lesion visualization.

In addition, the methods described herein do not employ or
require any models of the enhancement pattern, and can be
implemented without curve fitting. The methods advanta-
geously depict ablation lesions, pathological tissue, or other
abnormalities associated with spatially varied perfusion rates
at any moment during the dynamic contrast enhancement
data acquisition process, starting at a very short time after
contrast agent injection (even in the cases when the original
contrast enhanced curves have little or no distinctive shape).
The calculations employed in the aforementioned methods
may be performed iteratively and take very little time (as
compared to the dynamic acquisition time), and all data pro-
cessing can be executed in real time in parallel with data
acquisition and optional automated interruption.

Clinical applications of the aforementioned methods on
moving anatomies may benefit from motion compensation
during the image acquisition for example cardiac and/or res-
piratory gating (the latter may be performed using either
respiratory belts or navigator echo or their combination (27)).
The present methods are not more vulnerable to motion than
any other existing dynamic contrast enhancement data analy-
sis approaches. However, the ability of the method to generate
proper lesion visualization shortly after contrast agent injec-
tion without any additional requirements to sample a particu-
lar CE pattern is expected to render the method less vulner-
able to gross anatomy displacement resulting from patient
motion. If such displacement occurs, the data acquired before
it may be sufficient to achieve proper lesion visualization.

While the cumulative map processing methods described
above, and demonstrated in the forthcoming examples, have
been disclosed as applied to MRI imaging methods, it is to be
understood that the embodiments provided in the present
disclosure are not intended to be limited only to MRI dynamic
contrast enhancement images.

The examples described below, the present methods are
applied to the dynamic contrast imaging of ablated tissue. In
other example implementations, the methods may be applied
to the processing of dynamic data of other contrasts, such as,
but not limited to, images (such as T2w images) depicting
stem cell injection, and images showing a distribution of
holmium microspheres evolving in real time.

The techniques described above can be applied towards
disease detection or other diagnostic procedures in other
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organs and tissues in the body, based on their characteristic
vascularization, such as muscles, liver, kidney, brain. In other
examples, bone density, bone integrity and fracture detection
can be determined using the present imaging techniques.
Other potential applications of the methodologies disclosed
above include detection and treatment of tumors (due to over-
vascularization) and localization of scars (due to under vas-
cularization), detection of any diseases characterized by per-
fusion such as early stroke, early pulmonary aneurysm and
myocardial infarcts.

Any biological, biocompatible and/or non-biological
materials that have the potential of vascularization or perfu-
sion, possess an open microstructure and/or porosity, can be
successfully visualized using this technique for structural,
anatomical, physiological, and/or functional assessment.

Other examples of contrast imaging modalities that can be
improved using this methodology include CT, US, X-Ray,
PET, SPECT, nuclear perfusion modality and optical modali-
ties.

The following examples are presented to enable those
skilled in the art to understand and to practice embodiments of
the present disclosure. They should not be considered as a
limitation on the scope of the present embodiments, but
merely as being illustrative and representative thereof.

EXAMPLES
Example 1

Experimental Demonstration of Cumulative
Dynamic Contrast Enhancement Mapping

The present example describes an experimental realization
and demonstration of selected embodiments of the disclo-
sure.

Using clinical EP catheters, 56 RF lesions were created in
the Latissimus dorsi muscles of 15 rabbits with power and
time settings varying in the range 30-35 Watt/30-45 sec. MRI
was performed ona 1.5 T Signa HD scanner (General Electric
Healthcare) using dynamic contrast enhancement as well as
T2w, SSFP and Delayed Enhancement (DE) scans for com-
parison. Sedated animals were positioned inside a standard
transmit-receive birdcage head coil. MR imaging sessions
lasted ~2.5-3 hrs. and were performed after the ablations as
follows: at few minutes (4 rabbits), ~3 hours (11 rabbits), ~1
week (2 rabbits), ~2 weeks (5 rabbits), and ~4 weeks (4
rabbits) after the ablations.

3D T2w and SSFP imaging was performed before contrast
agent injection using Fast Spin Echo (FSE) and FIESTA
correspondingly. 3D DE imaging was performed using Inver-
sion Recovery Fast RF-Spoiled Gradient Echo (IR-FSPGR).
Two 3D sets of IR-FSPGR images were acquired per imaging
session—before contrast agent injection and 5-9 min. after
injection. In some cases, pre-contrast agent 3D IR-FSPGR
data sets were subtracted from the corresponding post-con-
trast agent data sets for better background signal suppression.
Dynamic contrast enhancement images were acquired using
2D multi-phase FSPGR. Typically, animals were injected
with either 0.05 ml/kg of Gadovist or 0.1 ml/kg of Gadoteri-
dol and injections started as soon as 2-5 pre-contrast agent
baseline phases have been acquired. The contrast agent injec-
tion process lasted a few seconds.

Different MR image acquisition parameters were used dur-
ing the study. The typical parameters are summarized below.
2D multi-phase FSPGR was acquired with the Extended
Dynamic Range (EDR) option, in-plane resolution of 0.63x
0.69 mm, 3.0 mm slice thickness and zero spacing, temporal
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resolution of 10.4 sec. per phase, TR/TE of 9.4/2.7 msec.,
RBW of 15.6 kHz and FA of 30°. 35 temporal phases were
acquired at 5 imaging slice locations in 6:05 min. 3D T2w
FSE was acquired using the EDR option with the in-plane
resolution of 0.31x0.31 mm, slice thickness of 1.2 mm with
0.9 mm overlap, TR/TE 0of 900/27.4 msec., RBW of 15.6 kHz,
using 4 signal averages leading to the total scan time of 7:57
min. (72 slices). 3D FIESTA was acquired using the EDR
option with the in-plane resolution of 0.31x0.21 mm, slice
thickness of 1.2 mm with 0.9 mm overlap, TR/TE of 14.7/4.2
msec., FA of 30°, RBW of 15.6 kHz, using 8 signal averages
leading to the total scan time of 8:17 min. (72 slices). 3D
IR-FSPGR was acquired with the in-plane resolution 0f 0.42x
0.38, slice thickness of 1.2 mm with 0.9 mm overlap, TR/TE/
TI of 15.9/7.6/200 msec., RBW of 15.6 kHz and FA of 25°,
using 6 signal averages and total scan time of 8:32 min. (72
slices).

Acquired 3D data was rendered, reformatted and reviewed
using Volume Viewer (Advantage Workstation, General Elec-
tric Healthcare). The location, size, shape and appearance of
the ablation lesions were compared to those reported by the
described post-processing method.

The dynamic contrast enhancement data was transferred to
a stand-alone Linux computer equipped with four x86_ 64
Intel Xeon 3.0 GHz CPU’s (HP xw8400, Hewlett Packard)
and post-processed as described in above using software writ-
ten in IDL v. 6.4 (ITT Visual Information Solutions) to
execute the aforementioned method steps. The software
simulated real-time working conditions by reading, post-pro-
cessing and analyzing the dynamic series of MR images one
by one, while recording the amount of time spent on each
major step for each series.

Each dynamic series (all imaging slices acquired at a cer-
tain time instant) was read and post-processed by the software
as a whole entity. A region of interest (ROI) was extracted
from each slice (while the rest was not kept in the memory)
and all the operations described below were performed on the
ROIs. One of the slices was marked as the “main visualiza-
tion” slice, whose lesion visibility was to govern the decision
of continuing or interrupting data reading and processing. In
some cases, the original images were low-pass filtered by a
single passage of a 3x3 pixel averaging filter for the sake of
comparison with the same non-filtered data. Equations 1, 4
and 13 were evaluated on several first pre-contrast agent
dynamics on each slice. In some cases, the empty background
pixels containing no tissue were suppressed for the sake of
comparison with the same non-altered data.

Afterwards, CID, CIR and CES maps were calculated
according to equations 14, and 5 correspondingly as well as
the histogram of the current CES map was calculated and
analyzed. A simple direct comparison algorithm compared
the histogram bin values to identify two highest values and the
lowest value located in-between the highest values.

The identified bin values and associated pixel intensity
values were then compared to pre-defined thresholds (identi-
fied empirically) defining their separation in terms of both the
number of pixels forming each bin and the pixel intensity
values corresponding to those bins. As soon as the desired
separation level was achieved for the “main visualization”
slice, the software automatically stopped reading and post-
processing temporal dynamic contrast enhancement dynam-
ics, recorded the current dynamic contrast enhancement scan
and software post-processing times, and switched to the
lesion segmentation mode (thereby interrupting the image
acquisition process).

Ablation lesions were then segmented from the latest (i.e.
final) CES map. Segmentation was performed using either a
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segmentation threshold defined at the gray level having an
intensity 5% higher than that of minimum bin value (identi-
fied in between the two maxima as described above), or by the
Otsu method (25). Afterwards, the resulting lesion map’s
readability was enhanced by first erosion and then dilation by
a single passage of 8-connectivity element (25) followed by
low-pass filtering using a single passage of a 3x3 pixel aver-
aging filter and output altogether with the corresponding
CES, CID and CIR maps.

Also, three additional functions were calculated in parallel
on the same data set (baselines and ROI’s) for the sake of
comparison—the traditional intensity difference (current
intensity minus the baseline image one per pixel), traditional
intensity ratio (current intensity divided by the baseline image
one per pixel), and simple signal sum (intensity values at all
available temporal dynamics summed per pixel). The time
spent on calculating these comparative functions was not
counted separately but was included in the total temporal
dynamic post-processing time.

In a separate software run, the lesion-to-tissue contrast-to-
noise ratio (CNR) and lesion profiles were calculated to com-
pare the lesion border visualization capabilities of the present
and traditional approaches. To calculate the CNR, two rela-
tively small (~7-13x7-13 px) ROIs were chosen lying com-
pletely inside the lesion core and normally perfused tissue.
The mean and standard deviation was calculated for both
ROIs on the original dynamic contrast enhancement images
as well as all maps derived from them. Then, the difference
between the mean values calculated on the normal tissue and
lesion core was divided by the sum of both standard devia-
tions and the resulting lesion-to-tissue CNR was plotted as a
function of time for each post-processing method. To calcu-
late the lesion profiles, 3-5 rows or lines of pixels crossing
ablation lesions were extracted from the original dynamic
contrast enhancement images as well as all maps derived
from them and averaged to form a single line or row. The
resulting profiles were normalized to the dynamic range of
[0;1] and plotted as a function of the spatial coordinate.

FIG. 5(a) depicts a typical for the reported study dynamic
contrast enhancement image (after contrast agent injection),
which has not undergone any post-processing. The small
square ROIs mark locations around four single pixels, whose
intensity was plotted versus dynamic contrast enhancement
image acquisition time on FIG. 5(5) as ablation lesion core
500, ablation lesion border 510, normal tissue 520, and empty
background 530. The ablation lesion edge seems to experi-
ence a very weak CE as compared to the normal tissue and
lesion core, however the differences are obscured by the
image acquisition noise.

FIG. 6 depicts traditional difference and ratio as well
simple signal sum (as functions of the dynamic contrast
enhancement image acquisition time) calculated on the same
data and under the same conditions as FIG. 5 (except for the
five first dynamics averaged to form the baseline required for
subtraction and division). The difference (FIG. 6(a)) and ratio
(FIG. 6(b)) operations neither improve the contrast between
pixels with different CE properties nor reduce the noise (as
was expected). In contrary, the summation (FIG. 6(c)) does
lead to noise reduction due to the mutual cancellation of the
noise-dominated terms (Appendix 3), which leads to
improved discrimination between pixels with different CE
properties in the very end of the scan.

FIG. 7 depicts CID, CIR and CES curves (as functions of
the dynamic contrast enhancement image acquisition time)
for the same pixels as on FIG. 5 calculated on the same data
and the same baseline as well as under the same conditions as
the curves on FIG. 6, but according to equations 14, 15 and 5
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correspondingly. Not only did the method substantially
reduce the noise and improves discrimination between pixels
with different CE properties, it also takes very few dynamic
contrast enhancement dynamic images to achieve such dis-
crimination. The CES value differences between the sample
pixels (FIG. 7(c)) become apparent as early as ~45 sec. after
contrast agent injection (~100 sec. dynamic scan time).

FIGS. 8 and 9 depict traditional difference, traditional ratio
and simple intensity sum as well as CID, CIR and CES maps
(correspondingly) calculated over the ROI depicted on FIG.
5(a) in the end of the dynamic contrast enhancement acqui-
sition. The present method provides superior ablation lesion
visualization in the terms of better lesion-to-tissue contrast
and more accurate lesion border delineation. This improve-
ment is quantified on FIG. 10, which depicts the time behav-
iour of the lesion-to-tissue CNR during the whole dynamic
contrast enhancement scan. The present cumulative approach
is thus twice more sensitive to the differences in the CE
properties between ablation lesions and normal tissue in spite
of the noise obscuring them, which implies better lesion
border delineation. FIG. 11 confirms this conclusion. CES,
CID and CIR exhibit the most homogenous lesion core and
gap profiles as well as the most sharp lesion borders. The
traditional difference produces even deeper lesion core pro-
files, but is very vulnerable to the noise, so both lesion core
and gap profiles are distorted by noise spikes so much, that
identification of the real lesion borders becomes challenging.

FIG. 12(a) depicts the lesion map segmented from the
dynamic contrast enhancement data represented by FIG. 1
from the CES calculated at 159 sec. from the scan beginning
(FIG. 12(b)), which is 104 sec. after contrast agent injection
and 206 sec. before the ending of the actual data acquisition
procedure. At this moment, the automatic histogram analysis
algorithm found that the typical maxima at the CES map’s
histogram are separated enough to provide sufficient lesion
visualization and stopped the processes of reading and post-
processing the dynamic contrast enhancement data. FIGS.
13(a)-(d) illustrate the time-dependent shape change in the
histogram, along with the corresponding CES maps. The
segmented lesion map depicts correctly the three ablation
lesions in the center, the non-perfused rim at the edge of the
animal’s body (occupied by physiological solution, which
was powered onto the muscle to enable electrical conduction
during the ablation and stayed trapped under the skin) as well
as the fold between the animal’s thigh and trunk, which was
filled with air and did not generate enough MRI signal due to
the partial volume effect (the non-perfused area above the
uppermost lesion).

The post-processing time was ~0.64 sec. per dynamic,
which included: reading 5 images (by the number of imaging
slices acquired at each dynamic) from the hard drive, seg-
menting 95x175 pixels ROI’s from each image (83125 pixels
altogether), smoothing them with a single passage of the 3x3
pixels averaging filter, identifying the empty background pix-
els, calculating CID, CIR and CES maps as described above
section for each ROI, calculating the traditional intensity
difference, traditional intensity ratio, and simple signal sum
as described above for the sake of comparison, calculating the
CES map’s histograms for each slice, smoothing them with
2-3 passages of a 7 pixels wide averaging pixels, identifying
two global maxima, testing the maxima and the minimum
between them according to the pre-defined relative height and
separation criteria, taking the “stop or read again” decision.
The few first pre-contrast agent dynamics were post-pro-
cessed in considerably less time—~0.47 sec., while the five
baseline images, normalization constants and correction
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terms (equations 1, 4 and 13 correspondingly) were calcu-
lated in ~0.27 sec. These results are typical.

In all of the present experiments, the post-processing time
per dynamic was less than 1 sec., which was always consid-
erably less than the acquisition time for a single dynamic.
After the “stop” decision was generated, it took ~1.2 sec. to
segment (by the Otsu method) and to smooth (by first erosion
and then dilation using a single passage of 8-connectivity
element followed by single passage of a 3x3 pixel averaging
filter) all five lesion maps. In total, the whole post-processing
time for the data set was ~10 sec. beginning at the moment the
first image was read from the hard drive and ending the
moment the final lesion map for the visualization slice was
output (FIG. 12(a)).

FIG. 14 shows 3D IR-FSPGR data set reformatted to coin-
cide with the locations of the dynamic contrast enhancement
slices depicted on FIGS. 9 and 11. In all the experiments, the
cumulative and lesion maps coincided very well with the
lesion representations depiction by the conventional methods
(T2w, SSFP and DE imaging).

In general, the proposed cumulative characteristics
enabled good ablation lesion visualization and segmentation
without any user interaction on the cost of rather small post-
processing times rather shortly (usually, 1-1.5 min.) after
contrast agent injection, well before the end of the dynamic
contrast enhancement dynamic series.

The described method has demonstrated good perfor-
mance on all lesions regardless oftheir age. The one week old
lesions had the most bright and sharp hyper-enhancement
rim, which improved lesion border visibility. However, the
method’s performance on fresh (~2-3 hrs. old) lesions was
good, which suggests its applicability during EP ablation
cases.

CID, CIR and CES maps seem to be rather similar, so one
would consider that any one may be sufficient. However, as
FIG. 7(c) suggests, the CES map develops the proper lesion-
to-tissue contrast the earliest. It enables fast lesion visualiza-
tion at 100 sec. of dynamic contrast enhancement scan time
(45 sec. after contrast injection), while the rest of the methods
are still does not provide sufficient differentiation between
pixels with different CE properties. However, it does contain
the noise from both CID and CIR, so its CNR behaves close
to CID (by FIG. 10). As suggested by FIG. 11, CES offers the
best compromise between the flatness and sharpness of the
lesion profile. This may be the reason why in many experi-
ments CES maps provide apparent better lesion edge delin-
eation for the naked investigator’s eye.

APPENDICES

Appendix 1

A pixel’s magnitude image intensity can be represented as
@D

M:‘/(SR+nR)2+(SI+n1)2 [Al-1],

where S, and S; are real and imaginary parts of the acquired
signal, while n; and m, are zero-mean normally distributed
random variables describing the measurement noise in the
real and imaginary channels correspondingly. Eq. [Al-1] can
be re-written as
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Al-2
(Sg +nr)* + (1 + 1) + 2SR + 18) _ : !

(Sr+m1) = 2(Sk +7R)(ST +171)

M

=[Sk +10) + (51 + 1) = 2Sk +ng)(Sy +1y) =

2(S S,
- \/[(SR R+ +m>]2x(1 - M]

[(Sk +7mR) + (Sr +171)

Taking into the account the fact that the second term in Eq.
[A1-2] (the one in parenthesis) is always real and positive (as
well as less than unity since the denominator of the fraction is
always greater than the fraction’s nominator) and all the
involved parameters are real, Eq. [A1-2] can be re-written as

2(Sg +7R)(SI +71) [Al-3]

M =|(Sg +R R A s
I(5k + :)+(nR+’7’)|X\/ [(Sk +178) + (S + 1)

sign(Sg + S + g + 1) X [(Sg +S57) + (7r + 7)1 X

\/1_

(Sg +S7) xsign(Sg +.5; + g + 1) X

Jl_
2(S, S
sign(Sg +S; + 7r +r],)><\/1 —M ,
[(Sk +71R) + (S; +171)]

2(Sr +7R)(S1 +11) _
Sk +nr) + Sr +n0)]*

2(Sk +R)(S1 +171)

[Gr+ 700+ 1 s qnf T OREIX

Both terms summed in Eq. [A1-3] are dependent on both
signal and noise values in the acquisition channels. They are
added equally with the same weighting coefficient (which is
also dependent on both signal and noise values in the acqui-
sition channels) to form the magnitude image. However, the
first term is proportional to (Sz+S,), so its contribution to the
final sum is mainly dominated by the acquired signal values.
As for the second one, it is proportional to (Nz+m;), so its
contribution to the final sum is mainly dominated by the
acquisition noise and its behaviour approximates that one of
the acquisition noise. Thus, one can consider the magnitude
image intensity as being a sum of two different components—
“mainly signal” and “mainly noise” ones. A post-processing
method, which could reduce the contribution of the second
component only, would be able to improve the visibility of the
useful image features conveyed by the first component.

Sz and S,;depend on the properties of the imaged object and
scan conditions, so they do not vary unless those properties
and/or conditions change. Both 1 and m, are normally dis-
tributed around the zero mean, so they can be either positive
or negative with equal probability. Thus, for high SNR cases
(i.e., Sg+S>1x+1M),), the noise-dominated term will cause the
magnitude image intensity M to be either larger or smaller
than the (Sz+S,)-dominated value by depending on whether
(nz+M,) 1s positive or negative correspondingly. If sampled
during a time period, the measured values of M will be dis-
tributed on the both sides around the signal-dominated term,
which provides a biased (by a coefficient, which is less than
unity) estimate of the true acquisition signal. For low SNR
cases (i.e., Sx+S;<Nz+N,), the (N z+n)-dominated terms will
become strictly positive since they will define sign(Sz+S+
Nz+My- So, sampling during a period of time will deliver a
distribution around a positive constant dependent on the sta-
tistical properties of the measurement noise (n; and 1) per
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se. Both conclusions are in a very good concordance with the
previously reported analyses (e.g.: FIG. 1 of 21, FIG. 4 0of 20,
etc.).

Thus, the magnitude image pixel intensity can be consid-
ered as being a sum of two terms—signal-dominated and
noise-dominated ones, and the noise-dominated term can be
either positive or negative for pixels producing higher signal
values as well as distributed around a positive constant for
low-signal pixels (e.g. empty spaces on the FOV).

Appendix 2

The present example assumes, for purposes of illustration,
that a dynamic series of magnitude images is acquired using
aT1w RF-spoiled Gradient Echo sequence with a fixed set of
imaging parameters while contrast agent is washed into and/
or from the imaged anatomy. In this case, the image voxel
intensity is a function of the contrast agent concentration only
and can be represented as (24):

1-Ey(C -
M(C) = po X sin(f) W;LI;NC) X E(C) (A-1]
E(C)= exp[—TR x(% +a c]] [A2-2]
[A2-3]

1
EB(O) = exp[—TEx(ﬁ + ozzC)],

as well as C is the contrast agent’s concentration; p, is the
voxels spin density; 0, TE and TR are the flip angle, echo time
and repetition time of the pulse sequence; T1 and T2* are the
inherent relaxation times of the tissue occupying the voxel (in
the absence of any contrast agent); o, and a., are the longitu-
dinal and transverse relaxivities of the contrast agent corre-
spondingly.

Since the denominator in Eq. [A2-1] cannot approach zero
under the practical imaging conditions and both E,(C) and
E,(C) are n times differentiable by C, i.e.

d"E, . . [A2-4]
o = U@ TRIEL,

#E I A2S
2 = (@ TENEs, [A2-3]

then M(C) can be evaluated using Taylor’s expansion for any
ACe[0;C,,,.] as

max.

n—1
M(AC) = M(0) + Z %M" (0AC* + R,(AC),
k=1 )

[A2-6]

where C, . is the maximum contrast agent concentration
achieved during the experiment and R,,(AC) is a residual. In
particular, for small AC values, when the non-linear on AC
terms can be omitted,

MAC) = M(0) + [A2-7]

E(0)E>(0)(1 — cosh)
(1 - E; (0)cos0)?

E2(0)1 - £, (0)

TR (1= E, (O)cos) |-

-
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As it follows from Egs. [A2-6] and [A2-7], the magnitude
image pixel intensity on a CE T1-weighted image can be
represented as a sum of two terms, where the first term con-
tains the signal arising due to the inherent MRI properties of
the tissue occupying the imaged voxel (if any), and the second
term contains the signal increment due to the infusion of the
contrast agent into the imaged voxel (if any).

The specific embodiments described above have been
shown by way of example, and it should be understood that
these embodiments may be susceptible to various modifica-
tions and alternative forms. It should be further understood
that the claims are not intended to be limited to the particular
forms disclosed, but rather to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of
this disclosure.
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Therefore what is claimed is:

1. A method of performing contrast-enhanced medical
imaging, the method including the steps of:

a) prior to injection of a contrast agent to a subject, acquir-
ing one or more baseline images of the subject with an
imaging device;

b) processing the baseline image data to determine an
average baseline image from the one or more baseline
images; and

during or after injection of the contrast agent to the subject;

¢) acquiring a post-injection image with the imaging
device;

d) processing image data from previously acquired post-
injection images to generate at least one cumulative
map, wherein a baseline contribution is removed based
on the average baseline image;

e) determining a frequency of occurrence of cumulative
map values of pixels within binned intervals in a form
suitable for generating a histogram;

) determining a quantity associated with a double-peak
shape of the histogram and comparing the quantity to a
pre-determined threshold, wherein each peak of the
double-peak shape is associated with tissue having a
different perfusion rate;

g) repeating steps c) to ) until the quantity exceeds the
pre-determined threshold; and

h) segmenting the most recently generated cumulative map
to generate a segmented image for visualizing a border
between tissue regions having different perfusion char-
acteristics;

wherein steps b), d), e), f) and h) are performed using one
Of More Processors.

2. The method according to claim 1 further comprising the
step of interrupting image acquisition after the quantity
exceeds the pre-determined threshold.

3. The method according to claim 1 wherein the step of
segmenting the cumulative map is performed by separating
pixels in the histogram by selecting pixels according to a
pre-defined criterion.

4. The method according to claim 3 wherein the pre-de-
fined criterion includes the pre-determined threshold.

5. The method according to claim 1 wherein the pre-deter-
mined threshold is associated with a contrast-to-noise ratio
that is suitable for subsequent image analysis.

6. The method according to claim 1 wherein image data is
obtained for a plurality of slices, and wherein the step of
generating a cumulative map includes generating a per-slice
cumulative map for each slice.

7. The method according to claim 6 wherein the step of
generating a histogram associated with the cumulative map
includes generating a per-slice histogram for two or more of
the slices, and wherein the step of determining a quantity
associated with the double-peak shape of the histogram
includes determining a per-slice quantity for each of the two
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ormore slices, and wherein the step of comparing the quantity
to a pre-determined threshold includes the step of comparing
the per-slice quantities to the pre-determined threshold.

8. The method according to claim 7 wherein the step of
comparing the per-slice quantities to the pre-determined
threshold includes calculating an average value of the per-
slice quantities and comparing the average value of the per-
slice quantities to the pre-determined threshold.

9. The method according to claim 8 wherein the average
value is calculated as a weighted average using pre-defined
weights.

10. The method according to claim 7 wherein the two or
more slices are selected to be slices of physiological or ana-
tomical importance.

11. The method according to claim 6 wherein the step of
generating a histogram associated with the cumulative map
includes generating a per-slice histogram for two or more of
the slices, and wherein the step of determining a quantity
associated with the double-peak shape of the histogram
includes determining a per-slice quantity for each of the two
ormore slices, and wherein the step of comparing the quantity
to a pre-determined threshold includes the step of comparing
the per-slice quantities to corresponding per-slice thresholds.

12. The method according to claim 1 wherein step d) fur-
ther includes correcting for a bias in the cumulative map.

13. The method according to claim 12 wherein the bias
correction is based on the average baseline image and itera-
tively accumulated terms.

14. The method according to claim 12 wherein the step of
correcting for the bias includes adding, to the cumulative
map, a term proportional to the number of post-injection
images.

15. The method according to claim 14 wherein the term is
also proportional to a summation of the differences between
the measured intensity and the average baseline image inten-
sity for the baseline images obtained prior to injection of the
contrast agent.

16. The method according to claim 1 wherein the step of
generating the cumulative map includes performing a calcu-
lation based on a previously generated cumulative map and a
newly acquired post-injection image.

17. The method according to claim 1 wherein the cumula-
tive map is a cumulative intensity difference map.

18. The method according to claim 17 wherein step of
generating the cumulative intensity difference map includes
calculating differences between each post-injection image
and the average baseline image, and summing the differences.

19. The method according to claim 1 wherein the cumula-
tive map is a cumulative intensity ratio map.

20. The method according to claim 19 wherein step of
generating the cumulative intensity ratio map includes calcu-
lating ratios of intensities between each post-injection image
and the average baseline image and summing the ratios.

21. The method according to claim 1 wherein the cumula-
tive map is a cumulative enhancement sum based on a cumu-
lative intensity difference map and a cumulative intensity
ratio map.

22. The method according to claim 21 wherein the cumu-
lative intensity difference map and the cumulative intensity
ratio map are normalized to a common dynamic range.

23. The method according to claim 1 wherein the at least
one cumulative map is two or more cumulative maps.

24. The method according to claim 1 wherein the cumula-
tive map includes image data from all previously acquired
post-injection images.
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25. The method according to claim 1 wherein when per-
forming step d) for the first time, the previously acquired
post-injection images is the first post-injection image.

26. The method according to claim 1 wherein the images
are obtained according to an imaging modality selected from
the group consisting of magnetic resonance imaging, ultra-
sound imaging, computed tomography, SPECT, PET, x-ray,
nuclear perfusion modalities, and optical imaging modalities.

27. The method according to claim 1 wherein the quantity
associated with the double-peak shape of the histogram is
selected from the group consisting of a ratio between the
peak-valley offset and the average peak height, the horizontal
separation of the peaks, the peak values, the peak positions,
the width of the peaks, and one or more fitting parameters
obtained from fitting the double-peak structure to a math-
ematical function.

28. A computer implemented method of automating acqui-
sition of dynamic contrast-enhanced medical images, the
method including the steps of:

a) acquiring, with an imaging device, baseline image data
including one or more baseline images of the subject
prior to injection of contrast agent;

b) processing the baseline image data to determine an
average baseline image;

¢) acquiring a post-injection image with the imaging
device;

d) processing image data from previously acquired post-
injection images to generate at least one cumulative map
and removing a baseline contribution based on the aver-
age baseline image;

e) determining a frequency of occurrence of cumulative
map values of pixels within binned intervals in a form
suitable for generating a histogram;

) determining a quantity associated with a double-peak
shape of the histogram and comparing the quantity to a
pre-determined threshold, wherein each peak of the
double-peak shape is associated with tissue having a
different perfusion rate;

g) repeating steps c) to ) until the quantity exceeds the
pre-determined threshold; and

h) segmenting the most recently generated cumulative map
to generate a segmented image for visualizing a border
between tissue regions having different perfusion char-
acteristics;

wherein steps b), d), e), f) and h) are performed using one
Or More processors.

29. A non-transitory computer-readable storage medium
comprising instructions for automating acquisition of
dynamic contrast-enhanced medical images, wherein execu-
tion of the instructions by one or more processors causes the
one or more processors to carry out the steps of:

a) acquiring, with an imaging device, baseline image data
including one or more baseline images of the subject
prior to injection of contrast agent;

b) processing the baseline image data to determine an
average baseline image;

¢) acquiring a post-injection image with the imaging
device;

d) processing image data from previously acquired post-
injection images to generate at least one cumulative map
wherein a baseline contribution is removed based on the
average baseline image;

e) determining a frequency of occurrence of cumulative
map values of pixels within binned intervals in a form
suitable for generating a histogram;

) determining a quantity associated with a double-peak
shape of the histogram and comparing the quantity to a
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pre-determined threshold, wherein each peak of the
double-peak shape is associated with tissue having a
different perfusion rate;

g) repeating steps c¢) to f) until the quantity exceeds the
pre-determined threshold; and

h) segmenting the most recently generated cumulative map
to generate a segmented image for visualizing a border
between tissue regions having different perfusion char-
acteristics;

wherein steps b), d), e), ) and h) are performed using one
OF MOre Processors.

30. A method of performing dynamic contrast-enhanced

medical imaging, the method including the steps of:

a) acquiring, with an imaging device, one or more baseline
images of a subject prior to injection of contrast agent,
and determining an average baseline image;

during or after injection of the contrast agent to the subject:

b) acquiring a post-injection image with the imaging
device;

¢) processing image data from previously acquired post-
injection images to generate at least one cumulative map
including image data from previously acquired post-
injection images, wherein a baseline contribution is
removed based on the average baseline image;

d) determining a frequency of occurrence of cumulative
map values of pixels within binned intervals in a form
suitable for generating a histogram;

e) determining a quantity associated with a double-peak
shape of the histogram and comparing the quantity to a
pre-determined threshold, wherein each peak of the
double-peak shape is associated with tissue having a
different perfusion rate; and

f) repeating steps b) to e) until the quantity exceeds the
pre-determined threshold; and

g) segmenting the most recently generated cumulative map
to generate a segmented image for visualizing a border
between tissue regions having different perfusion char-
acteristics;

wherein steps c), d), e) and g) are performed using one or
more processors.

31. A method of performing contrast-enhanced medical

imaging, the method including the steps of:

a) prior to injection of a contrast agent to a subject, acquir-
ing one or more baseline images of the subject with an
imaging device;

b) processing the baseline image data to determine an
average baseline image from the one or more baseline
images; and

during or after injection of the contrast agent to the subject;

¢) acquiring, with the imaging device, a plurality of post-
injection images;

d) processing image data from the post-injection images to
generate at least one cumulative map, wherein a baseline
contribution is removed based on the average baseline
image;

e) correcting for a bias in the cumulative map; and

) segmenting the cumulative map generate a segmented
image for visualizing a border between tissue regions
having different perfusion characteristics;

wherein the cumulative map is a cumulative enhancement
sum based on a cumulative intensity difference map and
a cumulative intensity ratio map; and

wherein steps b), d), e) and f) are performed using one or
more processors.

32. The method according to claim 31 wherein the bias

correction is based on the average baseline image and itera-
tively accumulated terms.
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33. The method according to claim 31 wherein the step of
correcting for the bias includes adding, to the cumulative
map, a term proportional to the number of post-injection
images.

34. The method according to claim 33 wherein the term is
also proportional to a summation of the differences between
the measured intensity and the average baseline image inten-
sity for the baseline images obtained prior to injection of the
contrast agent.

35. The method according to claim 31 further comprising
repeating steps ¢) through d) one or more times.

36. A computer implemented method of processing
dynamic contrast-enhanced medical images, the method
including the steps of:

a) acquiring, with an imaging device, baseline image data

including one or more baseline images of a subject;

b) processing the baseline image data to determine an
average baseline image;

¢) acquiring, with the imaging device, a plurality of post-
injection images;

d) processing image data from the post-injection images to
generate at least one cumulative map, and removing a
baseline contribution based on the average baseline
image;

e) processing the cumulative map data and the baseline
image data to correct for a bias in the cumulative map;
and

f) segmenting the cumulative map to obtain generate a
segmented image for visualizing a border between tissue
regions having different perfusion characteristics;

wherein the cumulative map is a cumulative enhancement
sum based on a cumulative intensity difference map and
a cumulative intensity ratio map; and

wherein steps b), d), e) and f) are performed using one or
more processors.
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37. A method of performing contrast-enhanced medical

imaging, the method including the steps of:

a) prior to injection of a contrast agent to a subject, acquir-
ing one or more baseline images of the subject with an
imaging device;

b) processing the baseline image data to determine an
average baseline image from the one or more baseline
images; and

during or after injection of the contrast agent to the subject;

¢) acquiring a post-injection image with the imaging
device;

d) processing image data from previously acquired post-
injection images to generate at least one cumulative
map, wherein a baseline contribution is removed based
on the average baseline image;

e) determining a frequency of occurrence of cumulative
map values of pixels within binned intervals in a form
suitable for generating a histogram;

) determining a quantity associated with a shape of the
histogram and comparing the quantity to a pre-deter-
mined threshold;

g) repeating steps c¢) to f) until the quantity exceeds the
pre-determined threshold; and

h) segmenting the most recently generated cumulative map
to generate a segmented image for visualizing a border
between tissue regions having different perfusion char-
acteristics;

wherein the cumulative map is a cumulative enhancement
sum based on a cumulative intensity difference map and
a cumulative intensity ratio map; and

wherein steps b), d), e), ) and h) are performed using one
OF MOre Processors.
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